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potentials 
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H3C 317, Canada 
$ Physics DepanmenZ Donetsk University, Donetsk, 340055 Ukraine 

Received 8 August 1995 

Abstract A parficular one-dimensional model of c lass id  mechanics obeying quadratic 
Poisson symmetry algebra is considered. After a special quantization the latter algebra is 
converted into the q-Weyl algebra describing s y m u i e s  of a specific Schriidinger operator. 
In this way one r e c 0 1 W ~ C t s  the simplest self-similar potential having infinitely many bound 
states with eigenvalues forming one geometric series. 

Recently the specific (self-similar) onedimensional reflectionless potentials with an infinite 
number of bound states have been considered in [Ilr]. Within the inverse scattering method 
these potentials correspond to some infinite soliton solutions of the Korteweg-de Vries 
equation. They obey non-trivial dynamical symmetries which are described by the q-Weyl 
(or q-oscillator), su,(l, I), or higher order polynomial quantum algebras 121. Although the 
full structure of special functions associated with these potentials is not known, some of 
their properties have been derived rigorously. The aim of the present paper is to use the 
simplest self-similar potential for the description of a specific quantization scheme of some 
mechanical systems which we call the symmetry-preserving quantization. 

In short, the idea of such quantization consists of the following. Suppose that the 
classical dynamics of a mechanical system is described by the Hamiltonian obeying some 
non-trivial Poisson algebra of symmetries which is not necessarily a Lie algebra. The 
generators of this algebra are supposed to be defined as some functions of the phase space 
variables p and x. It is assumed that the equations of motion for these generators are 
integrable in terms of some known special functions. Then the canonical quantization 
scheme, in which the quantum Hamiltonian has the same form as the classical one but p 
and x are replaced by the operators satisfying canonical commutation relations, does not 
guarantee that the resulting Schrijdinger equation has a simple structure of solutions. Loosely 
speaking, in the symmetry-preserving quantization scheme it is necessary to find a quantum 
Hamiltonian which would obey nonlinear symmetry algebra reducing in the classical limit 
to the original Poisson algebra [5 ] .  In particular, the simple classical dynamics determined 
by the latter algebra should correspond to a simple representation theory of the quantum 
algebra (which in some situations determines the spectrum of the Hamiltonian). In the 
simplest cases it happens that such a procedure generates Hamiltonians which have the 

5 On leave of absence from the Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia. 
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same form in the classical and quantum regions. It is this preservation of symmetries in 
the above sense that plays a crucial role in the explanation of the Manning mystery-why 
certain classical systems remain to be integrable after the canonical quantization [6]. 

It is evident that the latter quantization procedure is not defined uniguely. At the 
classical level one can perform arbitrary non-canonical changes of variables and there is 
no universal criteria for choosing one of the forms of the symmetry algebra in favour of 
another. There is no such freedom at the quantum level and, as a result, there are infinitely 
many quantum partners for one classical system. For the general aspects of relations between 
classical and quantum nonlinear algebras we refer to [5]. The procedure we use is somewhat 
analogous to the one appearing in the quantum Toda field theory [7], but we consider a 
quantum mechanical model. For a similar approach to the q-oscillator systems, see [SI 
and references therein. The results of this paper have been presented at the Workshop on 
Finite-Dimensional Integrable Systems (Dubna, Russia, July 1994). 

The general class of self-similar potentials analysed in [2] is related to the following 
nonlinear symmetry algebra: 

HA* = q-A*H (1) 

where H is the standard Schrodinger operator for a particle in one-dimensional space, 

H = -d2/dx2+u(x) (2) 

and A* are some operators containing both the finite-difference and differential parts. In 
(2) we use the normalization h = 1. As will be shown below, in the self-consistent quantum 
picture, when h # 0, the potential depends on h: U = u(x ,  h). For N = 1, relations (1) are 
equivalent to the q-Weyl algebra: 

(3) 
~~ A-A+ - q2A+A- = UJ o = (q2 - 1)El. 

For N = 2 one gets a q-analogue of the su(1, 1) algebra. The N 2 cases are not related 
directly to Lie algebras. . 

If the parameters 4, Ei are real and 0 c q2 c 1, Ei c Ek+l c 0, the algebra (1) 
has a spectrum genkrating meaning. Namely, the zero modes of the operator A- define 
N vacuum states with the energies &. Other bound states are generated by the sequential 
action of the operator A+ upon these vacua. Their eigenvalues are accumulating near the 
zero from below; positive energy states form a continuous spect". 

Self-similar potentials have interesting properties. In the limit q + 0 they become 
N-soliton potentials. For q + 1 they are related to the standard Painlev6 transcendents [9] 
and their spectrum consists of a number of arithmetic series. A further simplification of 
these systems for odd N and some of $e even N cases leads to the finite-gap potentials. 
Special subcases of the finite-gap potentials appear when q is a primitive root of unity [3]. 

Let us show that the algebra (3) is indeed a quantum algebra, that is to say it describes 
a non-trivial quantum problem such that when Plank's constant h goes to zero, one gets 
a meaningful classical mechanical system. For simplicity we restrict ourselves to the case 
N = 1 in (1). Denote by p and x the classical momentum and coordinate variables obeying 
the canonical Poisson bracket relations: 

(P, x) = 1 (4) (P. P) = ( x ,  x) = 0. 
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We introduce three (commuting) functions of the phase-space coordinates H, A* and A 
which satisfy the quadratic Poisson algebra 

(H, A) = isHA 
(A, A”) = -isH 

(H, A*) = -isA*H 

where s t 0 is a free parameter. It is easy to see that Q =~ A’A - H lies in the centre 
of this algebra, i.e. it is a Casimir element of it. Fixing Q to be a positive constant c, we 
write 

H = A*A- c. (7) 

(A, A*) = --ir(A*A - c)  (8) 

Then the equation (6) can be rewritten as follows 

which we take as the basic relation. Equations (5) follow from (8) and the definition (7). 
Let H be the Hamiltonian of a classical particle in some potential well 

H = p 2 + u ( x )  (9) 

A = ( p  - if(x))e’+(PJ) 

where, for convenience, we normalized the mass of the particle to be m = 112. Relation 
(7) leads naturally to the ansatz 

(10) 
where @ ( p ,  x )  is some real function of p and x .  The potential u(x)  and the function f ( x )  
are related in a simple way: u(x )  = f Z ( x )  - c. Substituting (9), (10) into ( S ) ,  we obtain 
the following equation upon @ ( p ,  x ) :  

This, quasilinear partial differential equation has the general solution , 

G(x)  = hs(f2(x) - c + x f ( x ) f ’ ( x ) )  + f’(x) 
containing arbitrary function F(H) of the Hamiltonian (9). Note that the latter freedom 
corresponds to the possibility of making gauge transformations A + Ae’B(H) in (5), (6) 
without changing the algebra. Discarding this freedom, we see that formally for arbitrary 
potential u ( x )  bounded from below (or arbitrary function f ( x ) )  there exists a phase function 
G ( p , x )  such that $e algebra (8) is satisfied. This fact reflects a possibility of mapping 
dynamics of a large variety of systems onto th;? dynamics described by (5), (6). Despite 
this discouraging fact, the quadratic Poisson algebra appears to be useful for derivation of 
the simplest self-similar potentials from the special quantization procedure. 

Consider the simplest solution of (1 1) linear in the momentum 

@ ( p i x )  = fsxp (13) 
which implies that G(x)  = 0, or 

This equation determines f ( x )  as an implicit function of x 

2arcsin(f(x)/&) + LI 
X =  

S d F F G  
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where (Y is an integration constant (we assume that c is positive). It is convenient to work 
with the symmetric potential u(x)  which appears from the condition f ( 0 )  = 0 or (Y = 0. 
Under this condition the relation (15) can be rewritten as a transcendental equation 

COS(ZU(Z)) = U(Z) z = i s f i x  u ( x )  = -cu2 ($&x) (16) 
which shows clearly that the potential u(x)  varies between u(0) = -c and u(00) = 0. Also, 
it is easy to see that the only extremal points of the potential are x = 0 (the minimum) 
and x = 03 (ihe maximum), i.e. there are no oscillations. An interesting feature of (16) 
is that the function u(z) (and so the potential) is defined uniquely only between the points 
zo F;: -2.97 and z1 F;: 6.20 (one has u(zo) F;: -0.942 and u(z1) F;: 0.987). At each edge 
of this interval a pair of new branches of solutions are appearing which is easy to see by 
plotting intersections of the graphs g(u) = coszu and g(u) = U for various values of 
the parameter z. Evidently, there are infinitely many such bifurcation points, the next ones 
close to zero being z F;: -9.37, -15.68 and z F;: 12.53, 18.82, etc. The solution defined on 
the whole axis is unique and it is the only physically acceptable one. 

Note that in the x -+ 0 limit one gets the harmonic oscillator potential: u(x)  F;: 
-c + szc2xz/4. The x --f 03 asymptotics 

.. 

(ir + 2nk)’ 
9 x 2  

u ( x )  = - 
show that we have an ordinary short-range potential. The arbitrary integer k = 0, 1,2, . . . 
appeared from the mentioned non-uniqueness of the solution of equation for f ( x ) .  
Asymptotics of the physical branch of the potential correspond to the choice k = 0. 

Classical equations of motion for the variables A @ ) ,  A*(t) determined by the algebra 
(5) are easily solved 

A@) = (H, A) = isHA A@) = A(0)CEf (17) 
where E is the energy of the particle. From (17) one can conjecture that the period of 
bounded motion of the particle depends inversely on the energy 

It can be checked that the form of the symmetric potential restored from (18) by the known 
inversion formula [lo] 

coincides with (16). So, for the taken simplest solution of the equation for @ ( p ,  x )  there 
is a correspondence between the evolution in time of the particle’s coordinate and of the 
dynamical variable A(p, x) .  This relation holds only in the bounded motion region. When 
E > 0, the variable A(t) continues to be bounded whereas the motion of particle is 
unbounded. This fact shows that in this case the relation between x ( t )  and A(f) is not 
unique. 

Consider now quantization of our problem. The simplest possibility consists in defining 
the Schrodinger operator as the operator arising from (9), (16) after replacement of p by 
-ihd/dx. Then there is no simple symmetry algebra and the energy spectrum is not known. 
We use another approach when the quantum Hamiltonian is defined from the requirement 
that the Poisson algebra (8) be transformed into the simple quantum algebra Indeed, let us 
replace Poisson brackets by the commutators of operators 

(7.0) 
i 

( A ,  B )  -+ h [ A .  BI. 



Letter to the Editor L593 

There is some ambiguity in doing this because of the operator ordering problem. We use 
the following prescription.  let us keep relation (7) and assume that after the quantization 
the parameter s is renormalid s + S(s, f i )  (in principle a similar renormalization should 
hold for the parameter c, but we keep it fixed). As a result, one gets the following quantum 
algebra 

[H, A ]  = hS(s, A)HA [A,  A'] = -ha@, f i ) (A+A - c)  

or 
A H  = q 2 X A  HAf =~g2A'H AA+ - q2A+A = ~ ( f i )  ~ (21) 

where we denoted 

4 2 -  l-AS(s,fi) o( f i )=c ( l -qZ) .  (22) 
This is the q-Weyl, or q-oscillator algebra which we have discussed in the beginning. 
Formally one may conclude that the discrete spectrum of the Hamiltonian H is determined 
from the relations (21) and consists of one geometric series: 

(23) 
However, there is no guarantee that we have a self-consistent picture. It is necessary to 
check that there exists a quantum analogue of the realization (9), (10) satisfying the relations 
(21). 

It is not clear how to define the quantum partner of the general solution @ ( p , x )  
(12), however for the simplest solution~(l3) this can be done easily. Indeed, the function 
exp(-kxp/Z) after the quantization becomes the unitary scaling operator T (the product xp 
is replaced by the anticommutator of operators [ x ,  p } / 2 ) .  In the coordinate representation 
one has 

zn H l n )  =&In) E. =-cq . 

~ + ( x )  = q'/'+(qx) q 

Comparing with (22) we find the form of the parameter S: S(s, 2) = (1 - e-")/fi, which 
tends to s, when f i  --f 0. As a result, the operators A ,  A' can be represented in the form 

Substituting these into (21) one gets the following differential-delay equation 

This equation corresponds to the simplest self-similar reduction of the dressing chain [I]. 
Here we have derived it from the completely different point of view-from the symmetry- 
preserving quantization of a simple classical mechanical system. The resulting Hamiltonian 
has the form 

d2 
d x z  

H = A+A - c = -z2- + f2(x, f i )  - f i f ' ( ~ . f i )  - C. 
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It is natural to demand that. a physical solution of (26) has definite value at zero, 
f(0, A) = constunt. This boundary condition fixes the potential uniquely. The choice 
f(0, A) = 0 leads to the symmetric quantum potential which is deeper than its classical 
partner (16): u(0, A) = -2c/(l + q2) .c -c. 

Consider the A + 0 limit in equation (26). Expanding f ( x ,  A) into the series in A 

and substituting it into (26) we see that the first term f ( x )  satisfies the classical motion 
constraint (14). The quasiclassical approximant g ( x )  is determined from a more complicated 
equation 

1 1 5 
- + xf €! + (xf' + 2f)g = -(xf)" S + -x'(ff')' 2 + -xff' 2 + fZ - c > '  

where the primes denote derivative with respect to x .  Note that if in the l i t  A --t 0 
the parameter q = e-"'' is kept fixed, then the q-Weyl algebra relations degenerate (i.e. 
there will not be non-iivial Poisson algebra) and the admissible potential has the form 
u(x )  = or/x', where or is an arbitrary constant. 

It is interesting to compare these results with those for the well known 'exactly 
solvable' potentials such as the harmonic oscillator, Coulomb, Poschl-Teller, etc. for 
which classical and quantum potentials coincide. This fact is due to the specific choice 
of the dynamical symmetry algebra (quadratic Jacobi algebra QJ(3)  [6]) describing both 
classical and quantum potentials. Moreover, it appears that the quasiclassical approximation 
to the discrete part of the spectrum coincides with the exact one. For the potential 
(16) this is not the case, because classical and quantum symmetry algebras correspond 
to essentially different potentials. As an illustration, consider the quasiclassical part 
of the discrete specmm for the potential (16) using the Bow correspondence formula 
dE,/dn = 21rfi/T(E,). Using (18) weget the quasiclassical spectrum E,, = Eoexp(-Asn). 
However, this spectrum does not coincide with the exact one for the 'classical' potential (16) 
because as we know already, the exponential spectrum (23) arises for a different, 'quantum' 
potential described by equation (26). 

As a final remark we would like to note that it is possible to repeat the presented above 
analysis for other regions of the parameters s and c, but after the quantization the symmetry 
algebra will have only a formal meaning [Z]. Consideration of the N > 2 systems (l), 
which is essentially more complicated than of the N = 1 case, lies beyond the scope of this 
note. The example of exact quantization of the Poisson algebras presented in this letter is 
quite sophisticated, it would be interesting to understand the general mechanism behind its 
existence in order to be able to analyse more complicated, e.g. higher-dimensional, systems. 

It is worth mentioning that one can consider in an analogous manner the self-similar 
potentials associated with the finite-difference Schriidinger equation 

(29) 

which have been described in [ll]. In this case the principal difference with respect to the 
model considered above consists of the definition of a classical Hamiltonian as a non-hivial 
function of the momentum. 

H1/.. E a n + l h + l +  ~ m @ n - ~ +  bn*n = A@n 
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